Papers & Publications

Out-of-the-box telecommunication systems thanks to our Research and Development Department

2018 Publications

Using the Q/V-band Aldo Paraboni payload to validate future satellite systems: Test campaign and preliminary results of the QV-LIFT project

Proc. URSI Atlantic Radio Science Meeting, Gran Canaria, Spain, May-June 2018

DOI:10.23919/URSI-AT-RASC.2018.8471633

ABSTRACT

In the NEFOCAST project we aim at estimating rainfall by the opportunistic use of the signal attenuation due to the propagation channel in satellite communications. The estimation is performed by reverse engineering the effects of the various propagation phenomena on the satellite signal. However, the accuracy of the estimation is affected by several factors: in first place the rapid fluctuations in signal amplitude caused by small-scale irregularities in the tropospheric refractive index; secondly, the perturbations of the orbit of GEO satellites, such as the gravitational effects of the moon and the sun, which, even if periodically counteracted by correction maneuvers, nevertheless cause residual orbit inclinations. The problem with all these factors is that they can cause large deviations in the clear-sky measurements that can be misinterpreted as rain events. In this paper we address these problems by employing two Kalman filters designed to track slow and fast changes of the received signal energy, so that the rain events can be reliably estimated.

Keywords

Logic gates, Switches, Payloads, Satellites, Modulation, Time series analysis, Europe

Real-time high resolution rainfall maps from a network of ground-based interactive satellite terminals: the NEFOCAST project

Proc. IoT Vertical and Topical Summit for Agriculture, Monteriggioni, Italy, May 2018.

Keywords

NEFOCAST project for real-time precipitation estimation from Ku satellite links: Preliminary results of the validation field campaign

Proc. URSI Atlantic Radio Science Meeting, Gran Canaria, Spain, May-June 2018.

DOI: 10.23919/URSI-AT-RASC.2018.8471431

ABSTRACT

NEFOCAST is a project funded by the Tuscany Region Goverment (Italy) that aims at setting up, and demonstrating through field experiments, the concept of a system able to provide precipitation maps in real-time based on the attenuation measurements collected by a dense population of interactive satellite terminals (called SmartLNB, smart Low-Noise Block converter) commercially used as bidirectional modems. The system does not require the set-up of specific precipitation measuring instruments, but uses telecommunication links. An algorithm that converts the SmartLNB raw data into attenuation values, and infers rainfall rate from the total signal attenuation provided by the devices and from the knowledge of the link geometry, has been developed. An experimental campaign will take place in 2018 in Tuscany with the purpose of validating the NEFOCAST estimates, obtained through a dense population of smartLNBs and an X-band dual-polarization weather radar, purposely installed. During a preliminary test phase, performance of the algorithm has been assessed tested by comparing data from individual smartLNBs with tipping bucket rain gauge and a co-located laser disdrometer. This study presents and discusses results obtained during the test phase, focusing on disdrometer evaluation.

Keywords

rainfall rate, individual smartLNBs, preliminary test phase, X-band dual-polarization weather radar, NEFOCAST estimates, experimental campaign, link geometry, total signal attenuation, SmartLNB raw data, telecommunication links, specific precipitation measuring instruments, validation field campaign, ku satellite links, real-time precipitation estimation

The potential of SmartLNB networks for rainfall estimation

Proc. IEEE Statistical Signal Process. Workshop, Freiburg, Germany, June 2018 (invited paper)

DOI: 10.1109/SSP.2018.8450692

ABSTRACT

NEFOCAST is a research project that aims at retrieving rainfall fields from channel attenuation measurements on satellite links. Rainfall estimation algorithms rely on the deviation of the measured E s /N 0 from the clear-sky conditions. Unfortunately, clear-sky measurements exhibit signal fluctuations (due to a variety of causes) which could generate false rain detections and reduce estimation accuracy. In this paper we first review the main causes of random amplitude fluctuations in the received E s /N 0 , and then we present an adaptive tracking algorithm based on two Kalman filters: one that tracks slow changes in E s /N 0 due to external causes and another which tracks fast E s /N 0 variations due to rain. A comparison of the outputs of the two filters confirms the reliability of the rainfall rate estimate.

Keywords

Kalman filter; nowcasting; Rain attenuation in satellite links; rain fields evaluation; Signal Processing; Instrumentation; Computer Networks and Communications

Kalman tracking of GEO satellite signal for opportunistic rain rate estimation

Proc. Symp. Wireless Commun. Systems (ISWCS), Lisbon, Portugal, Aug. 2018.

DOI: 10.1109/ISWCS.2018.8491192

ABSTRACT
In the NEFOCAST project we aim at estimating rainfall by the opportunistic use of the signal attenuation due to the propagation channel in satellite communications. The estimation is performed by reverse engineering the effects of the various propagation phenomena on the satellite signal. However, the accuracy of the estimation is affected by several factors: in first place the rapid fluctuations in signal amplitude caused by small-scale irregularities in the tropospheric refractive index; secondly, the perturbations of the orbit of GEO satellites, such as the gravitational effects of the moon and the sun, which, even if periodically counteracted by correction maneuvers, nevertheless cause residual orbit inclinations. The problem with all these factors is that they can cause large deviations in the clear-sky measurements that can be misinterpreted as rain events. In this paper we address these problems by employing two Kalman filters designed to track slow and fast changes of the received signal energy, so that the rain events can be reliably estimated.

Keywords

Rain fading; Kalman filter; satellite communication; opportunistic rain rate evaluation; nowcasting.

Feasibility of Energy Management Techniques for Ultra-low Power M2M SatCom Terminals

ASMS-SPSC, 2018

ABSTRACT

The request for the provision of services relying on Machine to Machine (M2M) communications have increased a lot over the last years. This has led to the introduction of M2M communications also in the SatCom area. In this context, the design of ultra-low power terminals becomes indispensable. In this paper, a feasibility study for assessing the implementation of an innovative energy efficient technique for ultra-low power M2M SatCom terminals is proposed. By Ieveraging on the E-SSA (Enhanced Spread Spectrum ALOHA) protocol, the newly proposed technique jointly exploits the use of multiple Spreading Factors (SFs) for transmission together with a smart transmission manager which is able optimize the use of energy harvesting by dynamically deciding when and how to transmit data. The proposed solution has been tested in different SatCom scenarios, demonstrating its effectiveness in terms of overall throughput and energy consumption.

Keywords

ultra-low power M2M SatCom terminals, E-SSA protocol, energy management techniques, Ultra-low Power M2M SatCom Terminals, ultra-low power terminals, SatCom, energy efficient technique, Machine to Machine communications, Enhanced Spread Spectrum ALOHA

Low Complexity Detectors for Spread Spectrum Receivers

ASMS-SPSC, 2018

DOI 10.1109/ASMS-SPSC.2018.8510734

ABSTRACT

In the context of the recent solutions proposed in the 3GPP for standardization group on NOMA (Non-Orthogonal Multiple Access) schemes, this paper discusses different approaches for implementing an approximate spread spectrum MMSE (Minimum Mean Square Error) detector. In addition, the implication of such detectors on the signal design is presented

Keywords

spread spectrum receivers, 3GPP, standardization group,NOMA, approximate spread spectrum MMSE detector, low complexity detectors, nonorthogonal multiple access schemes, minimum mean square error detector, signal design

A new highly spread spectrum slotted burst (H3SB) protocol for satcom applications

Ka-band Conference, 2018

Keywords

E-SSA, Enhanced Spread Spectrum Aloha, H3SB, ESVA, Earth Station Verification Assistance, Antenna Mapping, IOT; In Orbit Tests, Satcom-On-The-Move, SOTM, radiation pattern measurement

2017 Publications

The Nefocast project: A nowcasting weather platform based on dual-frequency interactive satellite terminals

Proc. URSI General Assembly & Scientific Symposium, Montreal, Canada, Aug. 2017

DOI:10.23919/URSIGASS.2017.8105126

ABSTRACT

In this paper, we present a research project named NEFO-CAST, that targets a very-short-term forecasting platform with high accuracy and small-scale spatial resolution. The innovative solution lies in adopting a new generation of interactive satellite terminals, called SmartLNB, that serves both as a weather sensor and the transceiver for the forecasting platform. Throughout the paper, we highlight the main features of the system, including the advantages compared to state-of-the-art solutions, the expected results, and the market perspectives.

Keywords

Satellite broadcasting, Rain, Radio frequency, Weather forecasting, Electronic mail, Real-time systems

Exploiting satellite Ka and Ku links for the real-time estimation of rain intensity

Proc. URSI General Assembly & Scientific Symposium, Montreal, Canada, Aug. 2017

DOI: 10.23919/URSIGASS.2017.8105128

ABSTRACT

In this paper we describe a statistical and a physically based approaches to retrieve 2D rainfall fields exploiting the attenuation measurements made along satellite links at Ka and Ku bands, in the framework of the research project NEFOCAST. The retrieval algorithms, the main results obtained so far, and the on going test campaign are presented and discussed.

Keywords

Real-time estimation, Rain intensity, Physically based approaches, 2D rainfall fields, Attenuation measurements, Satellite links, Retrieval algorithms, Statistical approaches, NEFOCAST

Technologies for the ground segment of the future Q/V band satellite systems: The QV-LIFT project

Proc. URSI General Assembly & Scientific Symposium, Montreal, Canada, Aug. 2017

DOI: 10.23919/URSIGASS.2017.8105214

ABSTRACT

This paper presents a summary of the project: “Q/V band earth segment Link for Future high Throughput space systems” (QV-LIFT), recently funded in the framework of the EU program Horizon 2020. The project aims at developing up to date hardware and software technologies for the Ground Segment of the future Q/V band terabit Satcom infrastructure.

Keywords

Satellite ground stations, Satellite links, Ground segment, Future Q/V band terabit Satcom infrastructure, Future Q/V band satellite systems, QV-LIFT project, Q/V band earth segment Link, Future high Throughput space systems, EU program Horizon 2020

QV-LIFT project: Using the Q/V band Aldo Paraboni demonstration payload for validating future satellite systems

Proc. Ka and Broadband Commun. Conf., Trieste, Italy, Oct. 2017

ABSTRACT

In future communication satellite systems the adoption of higher frequencies as Q/V-band (around 40 GHz for downlink and 50 GHz for uplink) is seen as the promising step forward to achieve higher performance in terms of total system throughput. The envisaged usage of these frequency bands, bringing an additional 5 GHz bandwidth in each polarization (10 GHz in total), is dual: as feeder link for Fixed Satellite Service (FSS) systems and as user link for Mobile Satellite Service (MSS) for aeronautical terminals. The QV-LIFT project is paving the road for the future deployment of such Q/V-band SatCom systems, providing core technologies for both ground and user segments. The subsystems developed in the course of the project will be tested in a real environment using the Q/V-band Aldo Paraboni payload on Alphasat and its associated ground segment, made available by the Italian Space Agency (ASI). This project has been granted by the European Commission and involves a consortium of companies and universities coordinated by the Italian Space Agency (Agenzia Spaziale Italiana, ASI). The consortium consists of: Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Martel GmbH (Martel), Erzia Technologies SL (Erzia), Eutelsat S.A. (Eutelsat), M.B.I. SRL (MBI), Heriot-Watt University (HWU), SkyTech Italia SRL (SkyTech), OMMIC SAS (OMMIC). This paper presents part of the project activities, such as the description of one possible future Very High Throughput Satellite (VHTS) scenarios for Q/V-band systems. Furthermore, the technologies currently under development and the system test architecture which will be used to validate the developed technology and functionalities are presented.

Keywords

Q/V-band, Fixed Satellite Service (FSS), Mobile Satellite Service (MSS), QV-LIFT project, Space Agency (ASI)

Real-time rain rate evaluation via satellite downlink signal attenuation measurement

MDPI Sensors, vol. 17, article ID 1864, 24 pages, Aug. 2017

DOI: 10.3390/s17081864

ABSTRACT

We present the NEFOCAST project (named by the contraction of “Nefele”, which is the Italian spelling for the mythological cloud nymph Nephele, and “forecast”), funded by the Tuscany Region, about the feasibility of a system for the detection and monitoring of precipitation fields over the regional territory based on the use of a widespread network of new-generation Eutelsat “SmartLNB” (smart low-noise block converter) domestic terminals. Though primarily intended for interactive satellite services, these devices can also be used as weather sensors, as they have the capability of measuring the rain-induced attenuation incurred by the downlink signal and relaying it on an auxiliary return channel. We illustrate the NEFOCAST system architecture, consisting of the network of ground sensor terminals, the space segment, and the service center, which has the task of processing the information relayed by the terminals for generating rain field maps. We discuss a few methods that allow the conversion of a rain attenuation measurement into an instantaneous rainfall rate. Specifically, we discuss an exponential model relating the specific rain attenuation to the rainfall rate, whose coefficients were obtained from extensive experimental data. The above model permits the inferring of the rainfall rate from the total signal attenuation provided by the SmartLNB and from the link geometry knowledge. Some preliminary results obtained from a SmartLNB installed in Pisa are presented and compared with the output of a conventional tipping bucket rain gauge. It is shown that the NEFOCAST sensor is able to track the fast-varying rainfall rate accurately with no delay, as opposed to a conventional gauge.

Keywords

SmartLNB, NEFOCAST, Rain field maps, Rainfall rate, Attenuation measurement

2015 Publications

A new air-interface for affordable scada M2M services over satellite in Ku and Ka-band

Ka-band Conference, 2015

ABSTRACT

This paper describes the evolution of the ETSI S-band Mobile Interactive Multimedia (S-MIM) protocol to support Fixed Interactive Multimedia Services (F-SIM) exploiting existing Ku and Ka-band satellites. The key F-SIM protocol differences for both physical and upper layers are described and justified. The F-SIM protocol has been adopted by the recently deployed Eutelsat Broadcast Interactive System (EBIS) whose architecture, key system parameters, link budget examples and key composing elements are also described. Finally, a summary of laboratory and field trials results over the Eutelsat Ka-Sat multi-beam satellite are illustrated.

Keywords

S‐MIM, Mobile satellite services, Interactive broadcast, Random access, Enhanced spread spectrum aloha, Successive interference cancellation, Software‐defined radio, S‐band, E-SSA

From S-band mobile interactive multimedia to fixed satellite interactive multimedia: making satellite interactivity affordable at Ku-band and Ka-band

International Journal of Satellite Communications and Networking (IJSCN), 2015

ABSTRACT

This paper describes the evolution of the ETSI S‐band mobile interactive multimedia protocol to support fixed satellite interactive multimedia (F‐SIM) services exploiting existing Ku‐band and Ka‐band satellites. The key F‐SIM protocol differences for both physical and upper layers are described and justified. The F‐SIM protocol has been adopted by the recently deployed Eutelsat Broadcast Interactive System whose architecture, key system parameters, link budget examples and key composing elements are also described. Finally, a summary of laboratory and field trials results over the Eutelsat KA‐SAT multibeam satellite are illustrated. Copyright © 2015 John Wiley & Sons, Ltd.

Keywords

Satellite communications, Interactive television, Ka‐band, Random access, Machine to machine (M2M)

2014 Publications

Enhanced spread spectrum aloha demodulator implementation, lab oratory tests and satellite validation

International Journal of Satellite Communications and Networking (IJSCN), 2014

DOI: https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1086

ABSTRACT

This paper describes the implementation of the first enhanced spread spectrum aloha demodulator, based on an innovative architecture which combines software‐defined radio with processing via commercial graphics processing units. The validation tests performed both in laboratory conditions and directly on the satellite EUTELSAT 10A are presented. The performance assessment results obtained via satellite validate the theoretical results to a sufficient degree to make enhanced spread spectrum aloha technology a viable option for low‐power mobile and fixed terminals, thus encouraging the growth of satellite mass market applications. Copyright © 2014 John Wiley & Sons, Ltd.

Keywords

S‐MIM, Mobile satellite services, Interactive broadcast, Random access, Enhanced spread spectrum aloha, Successive interference cancellation, Software‐defined radio, S‐band

Performance Assessment of the Smart mAritime saTellite terminal for mUltimedia seRvices and conteNts (SATURN) system

Advanced Satellite Multimedia Systems Conference (ASMS) and Signal Processing for Space Communications Workshop (SPSC), 2014

DOI: https://ieeexplore.ieee.org/document/6934551

ABSTRACT

The following paper presents the ACCORD project which is aimed at specifying a complete platform capable of generating innovative terminals able to automatically reconfigure seamless switching between different air interfaces and relevant protocols. The ACCORD solution is a new concept comprising a platform for a family of terminals, which can be easily deployed according to the air interfaces and protocols supported. This truly innovative approach is based on three main features. Firstly a Smart router which provides seamless vertical handover by selecting the most appropriate network based on a Quality of Service policy. Secondly a Hybrid terminal on which both satellite and terrestrial waveforms are present. Lastly a Common Interface which manages the satellite and terrestrial air interfaces and their protocols using a fully Software-Defined Radio approach.

Keywords

Dual-use, Hybrid, SDR, Terminal, Mobile satellite communication, Mobility management (mobile radio), Quality of service, Routing protocols, Telecommunication switching

2013 Publications

S-MIM Field Trials Results

International Journal of Satellite Communications and Networking (IJSCN), 2013

DOI: https://doi.org/10.1002/sat.1069

ABSTRACT

An intelligent transport system open platform integrating the S‐band Mobile Interactive Multimedia messaging return channel protocol over satellite (based on Enhanced Spread Spectrum Aloha) has been developed and tested under real environment conditions within the framework of SafeTRIP, an FP7 EU‐funded project. This paper presents the first field trials results using the S‐band Mobile Interactive Multimedia technology. The introduced forward and return link outcomes have been derived from mobile field trials carried out in the surroundings of the German Aerospace Center (DLR) in Germany. Finally the validation of the system performances has been realized thanks to the use of a traffic emulator that can simulate a large population of Enhanced Spread Spectrum Aloha terminals. Copyright © 2014 John Wiley & Sons, Ltd.

Keywords

S‐MIM, Field trials, DVB‐SH, E‐SSA, S‐band, Link layer, Power control

2012 Publications

SATURN: Smart mAritime saTellite terminal for mUltimedia seRvices and conteNts

ESTEL, 2012

DOI: 10.1109/ESTEL.2012.6400175

ABSTRACT

The following paper presents the fundamental aspects of the SATURN initiative proposed by a group of Italian companies active in developing of new solutions which exploit the potential of S-band communications. SATURN is the acronym for “Smart mAritime saTellite terminal for mUltimedia seRvices and conteNts”. Using S-band technology will make it possible to provide new services and contents on board small (10 to 24 meters) maritime vessels where satellite services are not usually enabled. The innovation of the paper is the presentation of a new cost effective solution composed of antenna, gateway and plotter in order to address the maritime market segment not covered by other bi-directional communication satellite solutions. The proposed solution will provide new satellite services currently not available while the boats are far from the coast.

Keywords

Saturn, Satellites, Satellite broadcasting, Boats, Companies, Logic gates, Mobile communication, S-band, DVB-SH, E-SSA, S-MIM, SATURN

Developing ITS Services for the Open SafeTRIP Platform

4th Transport Research Arena (TRA), Athens, Greece 2012

DOI: 10.1016/j.sbspro.2012.06.1242

ABSTRACT

The goal of the ongoing SafeTRIP project is to provide the ITS community with a bidirectional communications platform on which any organisation can develop its own ITS and multimedia entertainment applications. This platform is open to developers willing to benefit from a wide range of state-of-the-art satellite communications services (using the recently allocated S-band spectrum for Mobile Satellite Services and based on standards co-developed by several SafeTRIP partners), as well as almost ubiquitous terrestrial communications networks. It is also available to researchers who wish to exploit its flexibility and open standards, as well as its advanced communications capabilities. This paper briefly presents the platform architecture and focuses more specifically on case studies exemplifying the development process for three different applications. It also shows how to capitalise on the enabling functions of the platform to streamline development Finally, a number of challenges specific to the automotive environment are analysed.

Keywords

Emergency Service, Transport Stakeholders, Satellite

2011 Publications

Cooperative End To End User Services in SafeTRIP

ITS Europe Congress, Lyon, France 2011

ABSTRACT

Satellite communication can empower ITS to deploy safety critical services and services of the future, while reaching an unprecedented large number of road users in an eco-friendly and economical way. The SafeTRIP project embraces S-Band communication, creating a powerful and flexible open platform for services that road users need. In this paper, we firstly present an overview of the SafeTRIP project, the salient aspects of the platform and its communication infrastructure. Secondly, we emphasise on the focus the project has on user needs to shape services that would be supported by the SafeTRIP open platform. Finally, we describe the subset of services that have been selected on their relevance to road safety which will part of the trials and demonstrators within the project. We conclude by describing the road map and the project evolution in future.

Keywords

S-Band, W2A Satellite, DVB-SH, Onboard vehicle units, Road safety, Fleet management, Mobile tv, Location-based services, Infotainment

DO you want to know more?

Researchers at MBI pave the path for new Telecommunications Systems 

Telecommunications are transforming the world in dramatic ways  and we’re advancing the field through our portfolio of research focused on these areas: towards platforms for new communication systems and the physics of new waveforms.

Papers and scientific articles ultima modifica: 2019-04-03T15:41:45+01:00 da esalsi@mbigroup.it